Chapter 2 - Functions and Transformations

A function is a relation that maps inputs to outputs.
\llcorner The function has both y and x values
\llcorner The \boldsymbol{x} value imputed in the function is called the domain
$\llcorner\quad$ The \boldsymbol{y} value output by the function is called the range
Composite functions are formed when you combined two or more functions, for example:

$$
f(x)=3 x+2 \quad g(x)=7-x
$$

Therefore, $f g(\boldsymbol{x})$ would be the function g entered as an input of \boldsymbol{x} in function f and simplified

$$
f(x)=3(7-x)+2
$$

The function inverse is the reflection of the function in the line $\boldsymbol{y}=\boldsymbol{x}$ changing all \boldsymbol{x} coordinates to \boldsymbol{y} coordinates and \boldsymbol{y} to \boldsymbol{x}, thus switching the range and domain of a function.

How to find the inverse function

Make $f(\boldsymbol{x})$ as \boldsymbol{y} and then make \boldsymbol{x} the subject of the equation then replace \boldsymbol{y} as \boldsymbol{x}, for example:

$$
\begin{gathered}
f(x)=3 x+2 \\
y=3 x+2 \\
y-2=3 x \\
(y-2) / 3=x
\end{gathered}
$$

So the inverse of $f(x)$ is $(x-2) / 3$

Transformations of the functions

\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=f(\boldsymbol{x})+\boldsymbol{a}$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by translating it through a unit in the positive \boldsymbol{y} direction.
\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=f(\boldsymbol{x}-\boldsymbol{a})$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by translating it through a unit in the positive \boldsymbol{x} direction.
\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=f(\boldsymbol{x}-\boldsymbol{s})+\boldsymbol{t}$ can be obtained from the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x})$ by translating it through \boldsymbol{s} units in the positive \boldsymbol{x} direction and \boldsymbol{t} units in the positive \boldsymbol{y} direction.
\llcorner For any function $f(\boldsymbol{x})$, and any positive value of \boldsymbol{a}, the graph of $\boldsymbol{y}=\boldsymbol{a} f(\boldsymbol{x})$ can be obtained from the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x})$ by a stretch of the scale factor \boldsymbol{a} parallel to the y-axis
\llcorner For any function $f(\boldsymbol{x})$, and any positive value of \boldsymbol{a}, the graph of $\boldsymbol{y}=f(\mathrm{ax})$ can be obtained from the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x})$ by a stretch of scale factor 1 parallel to the x-axis.

