Chapter 3 - Probability

* It is the relative frequency of an event happening

For example:

Getting a 1 when you roll a fair die once $=1 / 6$
This is because the number one only appears once on the die and there are 6 total numbers on the die
Getting a head when flipping a coin $=1 / 2$
Because there are two sides to a coin and one head it is $1 / 2$
A simple way to calculate the probability of an event is with the help of a tree diagram

Getting head twice $=1 / 2 \times 1 / 2=1 / 4$
Getting tail twice $=1 / 4$
Getting different outcomes on the two throws

Steps

- Fill in the probabilities on the branches.
- Consider which outcomes are required to answer the question.
- Find the probability of those outcomes by multiplying along the branches.
- Use the probability/probabilities you have calculated to answer the question.

For example, in a tree diagram if you were to flip the coin twice

1. Head first tail second $1 / 2 \times 1 / 2=1 / 4$
2. Tail first head second $1 / 2 \times 1 / 2=1 / 4$

Then you add both of those outcomes

$$
1 / 4+1 / 4=1 / 2
$$

Calculating Probabilities

Probabilities can be written as decimals or fractions and are within the range of 0 (impossible) to 1 (certain). If each outcome has an EQUAL likelihood of occurring:

Probability of the event = number of possible outcomes in the event / total number of possible outcomes

Intersection of A and
B shows the event in
which both A and B
occur

Venn diagrams

Venn diagrams can be used to represent events graphically. Frequencies or probabilities can be placed in the regions of a Venn diagram.

A rectangle represents the sample space ($(\mathcal{)}$. it containes closed curves that represent the events.

Mutually exclusive independent events

These are events that have no outcomes in common. For example getting heads or tails on a coin toss is a mutually exclusive event because you can't have both heads and tails at the same time. For mutually exclusive events:

$$
P(A \text { or } B)=P(A)+P(B)
$$

When one event has no effect on another, it is known as an independent event. For independent events A and B, the probability of B happening is the same regardless of whether A happens or not. For independent events:

$$
P(A \text { and } B)=P(A) \times P(B)
$$

