Chapter 1 - Quadratics

Quadratic equations

An example of a quadratic equation: $f(x)=a x^{2}+b x+c$
There are two ways to solve quadratic equations:

1. Breaking the Middle Term

Take the equation $6 \boldsymbol{x}^{2}+19 \boldsymbol{x}+10$

1) Find the product of the first and last term (a.c)

$$
6 \times 10=60
$$

2) Find the factors of 60 in such a way that addition or subtraction of that factors is the middle term ($19 x$)

Two factors of 60 include $\underline{15}$ and 4 which, when added together, give 19
3) Splitting of the middle term - $(15 \times 4=60$ and $15+4=19)$. Write the middle term using the sum of the two new factors, including the proper signs:

$$
6 x^{2}+15 x+4 x+10
$$

4) Group the terms to form pairs - the first two terms and the last two terms go together. Factor each pair by finding common factors:

$$
3 x(2 x+5)+2(2 x+5)
$$

5) Factor out the shared (common) binomial parenthesis:

$$
(3 x+2)(2 x+5)
$$

2. Using the Quadratic Formula

The Quadratic Formula: $-b \pm \sqrt{ }\left(b^{2}-4 a c\right) /(2 a)$

Take the same equation $6 x^{2}+19 x+10$

1) Insert the respective values in the formula
$\left(-19 \pm \sqrt{19^{2}}-(4 \times 6)(10)\right) /(2 \times 6)$
2) Use the formula to get the answer first with the minus sign then repeat with an addition sign
$\left(-19-\sqrt{19^{2}}-(4 \times 6)(10)\right) /(2 \times 6)=2 / 3$
$\left(-19+\sqrt{ } 19^{2}-(4 \times 6)(10)\right) /(2 \times 6)=-5 / 2$

The Quadratic Curve

If the coefficient of \boldsymbol{x}^{2} is +ve then the curve is downward shaped (happy face)

If the coefficient of \boldsymbol{x}^{2} is -ve then the curve is upward shape (sad face)
$>$ the coefficient is +ve - opens upwards
the coefficient is a-ve-opens downward <

The "Completing the Square" Method
This method is used for finding the turning point of a graph and helps in plotting a parabola. The completing the square equation is $\mathrm{n}(\boldsymbol{x}-\mathrm{h})^{2}+\mathrm{k}$
\llcorner If $n>0$, the parabola will have a MINIMUM value (so it will be an upward-facing curve)
\llcorner If $n<0$, the parabola will have a MAXIMUM value (so it will be a downward-facing curve)
In the equation, the point (h, k) is the turning point.

How to get a quartic equation into completing the square
Step 1: Write the quadratic equation as $\boldsymbol{x}^{2}+b \boldsymbol{x}+c$. (the coefficient of \boldsymbol{x}^{2} needs to be 1 . If not, take it as the common factor.)

Step 2: Determine half of the coefficient of \boldsymbol{x}.
Step 3: Take the square of the number obtained in Step 1.
Step 4: Add and subtract the square obtained in Step 2 from the \boldsymbol{x}^{2} term.

Step 5: Factorize the polynomial and apply the algebraic identity $\boldsymbol{x}^{2}+2 \boldsymbol{x y}+\boldsymbol{y}^{2}=(\boldsymbol{x}+\boldsymbol{y})^{2}(\mathrm{or}) \boldsymbol{x}^{2}, 2 \boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}=(\boldsymbol{x}+\boldsymbol{y})^{2}$ to complete the square.

Quadratic Inequalities

There are 3 types of quadratic inequalities: - $a x^{2}+b x+c<0$

- $a x^{2}+b x+c>0$
- $a x^{2}+b x+c=0$

To find the discriminant, use the formula $b^{2}-4 a c$

- $a x^{2}+b x+c<0$ has no real roots
- $a x^{2}+b x+c>0$ has two distinct real roots (distinct = different)
- $a x^{2}+b x+c=0$ has one real root

