Chapter 8 - Differentiation

Rules of Differentiation

Differentiation of a scalar multiple of a function	$\frac{\mathrm{d}}{\mathrm{d} x}(a y)=a \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Differentiation of the sum/difference of a function	$\frac{\mathrm{d}}{\mathrm{d} x}\left(y_{1} \pm y_{2}\right)=\frac{\mathrm{d} y_{1}}{\mathrm{~d} x} \pm \frac{\mathrm{d} y_{2}}{\mathrm{~d} x}$
Differentiation of Constant Function $y=$ c, where c is a constant	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Differentiation of a Power Function, where n is a real number	$\frac{\mathrm{d} y}{\mathrm{~d} x}=n x^{n-1}$

Differentiation is the process that helps us to calculate the gradient or slope of a function at different points. It also aids in identifying changes in one variable with respect to another variable.

$$
\begin{aligned}
& \frac{d y}{d x} x^{2}=2 x \\
& \frac{d y}{d x}(\sin x)=\cos x \\
& \frac{d y}{d x}(\cos x)=-\sin x \\
& \frac{d y}{d x}(\tan x)=\sec ^{2}(x) \\
& \frac{d y}{d x}(\cot x)=-\operatorname{cosec}^{2}(x) \\
& \frac{d y}{d x}(\operatorname{cosec} x)=-(\operatorname{cosec} x)(\cot x) \\
& \frac{d y}{d x}(\sec x)=(\sec x)(\tan x) \\
& \frac{d y}{d x} \ln (x)=\frac{1}{x} \\
& \frac{d y}{d x} a^{x}=a^{x} \log a \\
& \left.\frac{d y}{d x} x^{x}=x^{x}+\ln x\right) \\
& \frac{d y}{d x} e^{x}=e^{x} \\
& \frac{d y}{d x}(k)=0 ; k i \sin y \operatorname{constant} \\
& \frac{d y}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1}}-x^{2} \\
& \frac{d y}{d x} \cos ^{-1}=\frac{-1}{\sqrt{1}}-x^{2} \\
& \frac{d y}{d x} \tan ^{-1} x=1 / 1+x^{2} \\
& \frac{d y}{d x} \cot ^{-1} x=-1 / 1+x^{2} \\
& \frac{d y}{d x} \sec ^{-1}=1 / \mathrm{I} x \mathrm{I} \sqrt{x^{2}}-1 \\
& \frac{d y}{d x} \operatorname{cosec}^{-1}(x)=-\frac{1}{\mathrm{Ix} \sqrt{x^{2}}}-1
\end{aligned}
$$

Finding the derivative

Consider the curve $\mathrm{f}(\mathrm{x})$:
As point B moves closer to point A, the gradient of chord $A B$ gets closer to the gradient of the
 tangent to the curve at A.

The coordinate of A is $\left(x_{0}, f\left(x_{0}\right)\right)$ and B is $\left(x_{0}+h, f\left(x_{0}+h\right)\right)$. So, the gradient of $A B$ is
$\left(x_{0}+h, f\left(x_{0}+h\right)\right)-\left(x_{0}, f\left(x_{0}\right)\right) / h$
As h gets smaller, the gradient of $A B$ gets closer to the gradient curve at A.
Hence, the gradient function, or the derivative of a curve $y=f(x)$ is given by:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \lim _{h \rightarrow 0} \text { means the limit as } h \text { tends to } 0 .
$$

Differentiating x^{n}

$$
\begin{aligned}
& y=f(x)=x^{n} \text { then } \frac{d y}{d x}=f^{\prime}(x)=n x^{n-1} \quad \text { where } n \text { is any real number } \\
& y=f(x)=a x^{n} \text { then } \frac{d y}{d x}=f^{\prime}(x)=a n x^{n-1} \quad \text { where } n \text { is any real number and } a \text { is a constant }
\end{aligned}
$$

Gradients, tangents, and normal

The normal to a curve at point A is a straight line passing through A and perpendicular to the tangent line at point A. For a curve $y=f(x)$, the gradient of the tangent at point A with x-coordinate a is $f(a)$.
The equation of a tangent to the curve $y=f(x)$ at the point with coordinates ($a, f(a)$) is given by:

$$
y-f(a)=f(Q)(x-a)
$$

So, since the gradient of the tangent at point A is $f(a)$, the gradient of a Normal at point A will be $1 / f^{\prime}(a)$
The equation of a normal to the curve $y=f(x)$ at point $A \equiv(a, f(a))$ with gradient $1 / f^{\prime}(a)$ is given by

$$
y-f(a)=-\frac{1}{f^{\prime}(a)}(x-a)
$$

