The chapter relating to finding line segments, gradients, and midpoints of those line segments
Formulas

General Formula of a Line	$\mathrm{A} \boldsymbol{x}+\mathrm{By}+\mathrm{C}=0$
Slope Intercept Formula of a Line	$\boldsymbol{y}=\mathrm{m} \boldsymbol{x}+\mathrm{C}$
Point-Slope Formula	$\boldsymbol{y}-\boldsymbol{y}_{1}=\mathrm{m}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
The slope of a Line Using Coordinates	$\mathrm{m}=\Delta \boldsymbol{y} / \Delta \boldsymbol{y}=\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right) /\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)$
The slope of a Line Using a General Equation	$\mathrm{m}=-(\mathrm{A} / \mathrm{B})$
Intercept-Intercept Formula	$\boldsymbol{x} / \mathrm{a}+\boldsymbol{y} / \mathrm{b}=1$
Distance Formula	$\mathrm{IP1P} 2 \mid=\sqrt{ }\left[\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)^{2}+\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)^{2}\right]$
For Parallel Lines	$\mathrm{m} 1=\mathrm{m} 2$
For Perpendicular Lines	$\mathrm{m} 1 \mathrm{~m} 2=-1$
Midpoint Formula	$\mathrm{M}(\boldsymbol{x}, \boldsymbol{y})=\left[1 / 2\left(\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right), 1 / 2\left(\boldsymbol{y}_{1}+\boldsymbol{y}_{2}\right)\right]\right.$

