AS MATH - PURE 1

Chapter 1-Quadratics

Quadratic equations

An example of a quadratic equation: $f(x)=a x^{2}+b x+c$
There are two ways to solve quadratic equations:

1. Breaking the Middle Term

Take the equation $6 x^{2}+19 x+10$

1) Find the product of the first and last term (a.c)

$$
6 \times 10=60
$$

2) Find the factors of 60 in such a way that addition or subtraction of that factors is the middle term ($19 \boldsymbol{x}$)

Two factors of 60 include $\underline{15}$ and $\underline{4}$ which, when added together, give 19
3) Splitting of the middle term - ($15 \times 4=60$ and $15+4=19)$. Write the middle term using the sum of the two new factors, including the proper signs:

$$
6 x^{2}+15 x+4 x+10
$$

4) Group the terms to form pairs - the first two terms and the last two terms go together. Factor each pair by finding common factors:

$$
3 x(2 x+5)+2(2 x+5)
$$

5) Factor out the shared (common) binomial parenthesis:

$$
(3 x+2)(2 x+5)
$$

2. Using the Quadratic Formula

The Quadratic Formula: $-b \pm \sqrt{ }\left(b^{2}-4 a c\right) /(2 a)$

Take the same equation $6 x^{2}+19 x+10$

1) Insert the respective values in the formula
$\left(-19 \pm \sqrt{19^{2}-}(4 \times 6)(10)\right) /(2 \times 6)$
2) Use the formula to get the answer first with the minus sign then repeat with an addition sign
$\left(-19-\sqrt{19^{2}}-(4 \times 6)(10)\right) /(2 \times 6)=2 / 3$
$\left(-19+\sqrt{ } 19^{2}-(4 \times 6)(10)\right) /(2 \times 6)=-5 / 2$

The Quadratic Curve

If the coefficient of \boldsymbol{x}^{2} is + ve then the curve is downward shaped (happy face)
If the coefficient of \boldsymbol{x}^{2} is -ve then the curve is upward shape (sad face)
> the coefficient is +ve happy face the coefficient is a -ve sad face <

The "Completing the Square" Method

This method is used for finding the turning point of a graph and helps in plotting a parabola.
The completing the square equation is $\mathrm{n}(\boldsymbol{x}-\mathrm{h})^{2}+\mathrm{k}$
L If $n>0$, the parabola will have a MINIMUM value (so it will be an upward-facing curve)
\llcorner If $n<0$, the parabola will have a MAXIMUM value (so it will be a downward-facing curve) In the equation, the point (h, k) is the turning point.

How to get a quartic equation into completing the square
Step 1: Write the quadratic equation as $\boldsymbol{x}^{2}+b \boldsymbol{x}+c$. (the coefficient of \boldsymbol{x}^{2} needs to be 1. If not, take it as the common factor.)
Step 2: Determine half of the coefficient of \boldsymbol{x}.
Step 3: Take the square of the number obtained in Step 1.
Step 4: Add and subtract the square obtained in Step 2 from the \boldsymbol{x}^{2} term.
Step 5: Factorize the polynomial and apply the algebraic identity $\boldsymbol{x}^{2}+2 \boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}=(\boldsymbol{x}+\boldsymbol{y})^{2}$ (or) $\boldsymbol{x}^{2}, 2 \boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}=(\boldsymbol{x}+\boldsymbol{y})^{2}$ to complete the square.

Quadratic Inequalities

```
There are 3 types of quadratic inequalities:
    - ax }\mp@subsup{x}{}{2}+bx+c<
    - ax }\mp@subsup{x}{}{2}+bx+c>
    - ax }\mp@subsup{x}{}{2}+bx+c<0 has no real roots
    - ax }\mp@subsup{\boldsymbol{x}}{}{2}+bx+c>0 has two distinct real roots (distinct = different)
    - ax }\mp@subsup{x}{}{2}+bx+c=
    - ax}\mp@subsup{x}{}{2}+bx+c=0 has one real root
```


Chapter 2 - Functions and Transformations

A function is a relation that maps inputs to outputs.
\llcorner The function has both y and x values
\llcorner The \boldsymbol{x} value imputed in the function is called the domain
\llcorner The \boldsymbol{y} value output by the function is called the range
Composite functions are formed when you combined two or more functions, for example:

$$
f(x)=3 x+2 \quad g(x)=7-x
$$

Therefore, $\mathrm{fg}(\boldsymbol{x})$ would be the function g entered as an input of \boldsymbol{x} in function f and simplified

$$
f(x)=3(7-x)+2
$$

The function inverse is the reflection of function in the line $\boldsymbol{y}=\boldsymbol{x}$ changing all \boldsymbol{x} coordinates to \boldsymbol{y} coordinates and \boldsymbol{y} to \boldsymbol{x}, thus switching the range and domain of a function.

How to find the inverse function
Make $f(\boldsymbol{x})$ as \boldsymbol{y} and then make \boldsymbol{x} the subject of the equation then replace \boldsymbol{y} as \boldsymbol{x}, for example:

$$
\begin{gathered}
f(x)=3 x+2 \\
y=3 x+2 \\
y-2=3 x \\
(y-2) / 3=x
\end{gathered}
$$

So the inverse of $f(x)$ is $(x-2) / 3$

Transformations of the functions

\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=f(\boldsymbol{x})+\boldsymbol{a}$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by translating it through a unit in the positive \boldsymbol{y} direction.
\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=f(\boldsymbol{x}-\boldsymbol{a})$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by translating it through a unit in the positive \boldsymbol{x} direction.
\llcorner For any function $f(\boldsymbol{x})$, the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x}-\boldsymbol{s})+\boldsymbol{t}$ can be obtained from the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x})$ by translating it through \boldsymbol{s} units in the positive \boldsymbol{x} direction and \boldsymbol{t} units in the positive \boldsymbol{y} direction.
\llcorner For any function $f(\boldsymbol{x})$, and any positive value of \boldsymbol{a}, the graph of $\boldsymbol{y}=\boldsymbol{a} f(\boldsymbol{x})$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by a stretch of the scale factor \boldsymbol{a} parallel to the y-axis
\llcorner For any function $f(\boldsymbol{x})$, and any positive value of \boldsymbol{a}, the graph of $\boldsymbol{y}=f(\mathrm{ax})$ can be obtained from the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ by a stretch of scale factor 1 parallel to the x-axis.

Chapter 3 - Coordinate Geometry

The chapter relating to finding line segments, gradients, and midpoints of those line segments
Formulas

General Formula of a Line	$\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}+\mathrm{C}=0$
Slope Intercept Formula of a Line	$\boldsymbol{y}=\mathrm{m} \boldsymbol{x}+\mathrm{C}$
Point-Slope Formula	$\boldsymbol{y}-\boldsymbol{y}_{1}=\mathrm{m}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
The slope of a Line Using Coordinates	$\mathrm{m}=\Delta \boldsymbol{y} / \Delta \boldsymbol{y}=\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right) /\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)$
The slope of a Line Using a General Equation	$\mathrm{m}=-(\mathrm{A} / \mathrm{B})$
Intercept-Intercept Formula	$\boldsymbol{x} / \mathrm{a}+\boldsymbol{y} / \mathrm{b}=1$
Distance Formula	$\|\mathrm{P} 1 \mathrm{P} 2\|=\sqrt{ }\left[\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)^{2}+\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)^{2}\right]$
For Parallel Lines	$\mathrm{m} 1=\mathrm{m} 2$
For Perpendicular Lines	$\mathrm{m} 1 \mathrm{~m} 2=-1$
Midpoint Formula	$\mathrm{M}(\boldsymbol{x}, \boldsymbol{y})=\left[1 / 2\left(\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right), 1 / 2\left(\boldsymbol{y}_{1}+\boldsymbol{y}_{2}\right)\right]\right.$

Chapter 4 - Circular measure

This chapter is related to finding circle dimensions, including area and radius sector length. All the questions are in radian mode.

360 degrees $=2 \pi$ radians
Formulas
$S=r \theta$
S is the sector length
r is the radius
θ is the angle (in radians)
Area of a Sector - Formula
Area $a_{\text {circular sector }}=\frac{1}{2} r^{2} \theta$ For the perimeter of a sector add the arc length and radius two times.

Chapter 5 - Trigonometry

There are 3 main trigonometric functions:
$\llcorner\operatorname{Sin}$
\llcorner Cos
L Tan

Trigonometric identities
$\llcorner\operatorname{Sin} \theta=1 / \operatorname{Cosec} \theta$ or $\operatorname{Cosec} \theta=1 / \operatorname{Sin} \theta$
$\llcorner\quad \operatorname{Cos} \theta=1 / \operatorname{Sec} \theta$ or $\operatorname{Sec} \theta=1 / \operatorname{Cos} \theta$
L $\operatorname{Tan} \theta=1 / \operatorname{Cot} \theta$ or $\operatorname{Cot} \theta=1 / \operatorname{Tan} \theta$
$\left\llcorner\sin ^{2} \boldsymbol{a}+\cos ^{2} \boldsymbol{a}=1\right.$
ᄂ $1+\tan ^{2} \boldsymbol{a}=\sec ^{2} \boldsymbol{a}$
$\left\llcorner\operatorname{cosec}^{2} \boldsymbol{a}=1+\cot ^{2} \boldsymbol{a}\right.$
Trigonometric graphs - these can be both in degrees and radians

Sin Graph
Tan Graph

Cos Graph
$y=\cos x$

Chapter 6 - Binomial Expansion

\llcorner The total number of terms in the expansion of $(\boldsymbol{x}+\boldsymbol{y}) \mathrm{n}$ is $(\mathrm{n}+1)$
\llcorner The sum of exponents of \boldsymbol{x} and \boldsymbol{y} is always n.
$\llcorner\mathrm{nCO}, \mathrm{nC1}, \mathrm{nC2}, \ldots \ldots, \mathrm{nCn}$ are called binomial coefficients and are represented by $\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2, \ldots . ., \mathrm{Cn}$
\llcorner The binomial coefficients, which are equidistant from the beginning and the ending, are equal, i.e., $n C 0=n C n, n C 1=n C n-1$, $n C 2=n C n-2, \ldots .$. Etc.

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n} \begin{array}{c}
n \\
k
\end{array} x^{n-k} y^{k} \\
=\sum_{k=0}^{n} n_{k}^{n} x_{k}^{k} x^{n} y^{n-k}
\end{gathered}
$$

Examples

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Chapter 7 - AP GP

AP = Arithmetic Progression
$(A P)$ is a sequence of numbers in order, in which the difference between any two consecutive numbers is a constant value
L First term (a)
L Common difference (d)
\llcorner nth Term (an)
\llcorner Sum of the first n terms (Sn)
General formula $=a+(n-1) d$
General term $=a n=a+(n-1) \times d$
Sum of terms $=S n=n / 2[2 a+(n-1) \times d]$
GP = Geometric Progression
(GP) is a type of sequence where each succeeding term is produced by multiplying each preceding term by a fixed number, which is called a common ratio
$\llcorner\quad$ Three non-zero terms - $\mathrm{a}, \mathrm{b}, \mathrm{c}$ - are in GP only if $\underline{b 2=a c}$
\llcorner In a GP, three consecutive terms can be taken as a/r, a, ar
$\left\llcorner\right.$ Four consecutive terms can be taken as $a / r^{3}, a / r, a r, a r^{3}$
$\left\llcorner\right.$ Five consecutive terms can be taken as $a / r^{2}, a / r, a, a r, a r^{2}$
$\llcorner\operatorname{In}$ a finite GP, the product of the terms equidistant from the beginning and the end is the same. That means, $\mathrm{t} 1 . \mathrm{tn}=\mathrm{t} 2 . \mathrm{tn}-1=$ t3. $\mathrm{tn}-2=\ldots .$.
\llcorner If each term of a GP is multiplied or divided by a non-zero constant, then the resulting sequence is also a GP with the same standard ratio
L The product and quotient of two GPs is again a GP
\llcorner If each term of a GP is raised to the power by the same non-zero quantity, the resultant sequence is also a GP
General formula $=a r^{n-1}$
General term formula $=a n=t n=a r^{n-1}$
Sum of terms formula $=S n=a\left[\left(r^{n}-1\right) /(r-1)\right]$ if $r \neq 1$ and $r>1$
Sum to infinity formula $=S_{\infty} \infty=a 1 /(1-r)$

Chapter 8 - Differentiation
Rules of Differentiation

Differentiation of a scalar multiple of a function	$\frac{\mathrm{d}}{\mathrm{d} x}(a y)=a \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Differentiation of the sum/difference of a function	$\frac{\mathrm{d}}{\mathrm{d} x}\left(y_{1} \pm y_{2}\right)=\frac{\mathrm{d} y_{1}}{\mathrm{~d} x} \pm \frac{\mathrm{d} y_{2}}{\mathrm{~d} x}$
Differentiation of Constant Function $y=$ c, where c is a constant	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Differentiation of a Power Function, where n is a real number	$\frac{\mathrm{d} y}{\mathrm{~d} x}=n x^{n-1}$

$$
\begin{aligned}
& \frac{d y}{d x} x^{2}=2 x \\
& \frac{d y}{d x}(\sin x)=\cos x \\
& \frac{d y}{d x}(\cos x)=-\sin x \\
& \frac{d y}{d x}(\tan x)=\sec ^{2}(x) \\
& \frac{d y}{d x}(\cot x)=-\operatorname{cosec}^{2}(x) \\
& \frac{d y}{d x}(\operatorname{cosec} x)=-(\operatorname{cosec} x)(\cot x) \\
& \frac{d y}{d x}(\sec x)=(\sec x)(\tan x) \\
& \frac{d y}{d x} \ln (x)=\frac{1}{x} \\
& \frac{d y}{d x} a^{x}=a^{x} \log a \\
& \left.\frac{d y}{d x} x^{x}=x^{x}+\ln x\right) \\
& \frac{d y}{d x} e^{x}=e^{x} \\
& \frac{d y}{d x}(k)=0 ; k \text { is any constant } \\
& \frac{d y}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1}}-x^{2} \\
& \frac{d y}{d x} \cos ^{-1}=\frac{-1}{\sqrt{1}}-x^{2} \\
& \frac{d y}{d x} \tan ^{-1} x=1 / 1+x^{2} \\
& \frac{d y}{d x} \cot ^{-1} x=-1 / 1+x^{2} \\
& \frac{d y}{d x} \sec ^{-1}=1 / \mathrm{I} x \mathrm{I} \sqrt{2}-1 \\
& \frac{d y}{d x} \operatorname{cosec}^{-1}(x)=-\frac{1}{\mathrm{IxI} \sqrt{x}}-1
\end{aligned}
$$

Chapter 9 - Integration

Integration is the reverse of differentiation. We can use integration to find areas bounded between a curve and the coordinate axes.

Notation

The \int symbol is used to represent integration. Since integration is the reverse of differentiation, we know that:
The $d x$ means that we are integrating with

The expression we want to integrate goes between the integral sign and the $d x$. This is known as the integrand.

Indefinite integrals

Here, you need to integrate functions of the form x^{n}, where n is a constant and $n \neq-1$. To integrate functions of this form, you can use the following:

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c
$$

The " +c " is known as the constant of integration. To see why we must add this constant to our result, consider these functions:

$$
\begin{gathered}
y=x^{2}+2 \\
y=x^{2} \\
y=x^{2}-9
\end{gathered}
$$

If we differentiate the above functions, the result is the same: $d y / d x=2 x$ because the constant term disappears upon differentiation. However, since integration is the reverse of differentiation, we should be able to integrate $2 x$ and get back to whichever of those functions we started off with. To allow for this, we have to add the unknown constant of integration, c, to the end result. This process is known as indefinite integration.

Definite integrals

A definite integral is one where the integral is bounded between two limits. The main difference between a definite integral and an indefinite integral is that the former will yield a numerical value while the latter will yield a function. To calculate a definite integral:

$$
\int_{a}^{b} f^{\prime}(x) d x=[f(x)]_{a}^{b}=f(b)-f(a)
$$

Finding Areas

You can use definite integration to find the area bounded between a curve and the x-axis (areas under the line of the curve).
The area between a curve $y=f(x)$, the lines $x=a, x=b$, and the x-axis is given by:

Areas under the x-axis

When integrating over an interval where the curve is below the x-axis, the resultant area will be negative. Therefore, extra care must be taken when finding the areas under curves which are not positive.
\star When integrating over an interval where the curve is both above and below the x-axis, you should split the integral up into separate regions where the function is strictly positive or negative in each.

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq 1 \\
& \int d x=x+C \\
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec ^{2} x d x=\tan x+C \\
& \int \operatorname{cosec}^{2} x d x=-\cot x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+C \\
& \int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C \\
& \int \frac{d x=}{\sqrt{1-x^{2}}}=-\cos ^{-1} x+C \\
& \int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C \\
& \int \frac{d x}{1+x^{2}}=-\cot ^{-1} x+C \\
& \int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+C \\
& \int \frac{d x}{x \sqrt{x^{2}-1}}=-\operatorname{cosec}^{-1} x+C \\
& \int e^{x} d x=e^{x}+C \\
& \int \frac{d x}{x}=\log |x|+C \\
& \int a^{x} d x=\frac{a^{x}}{\ln a}+C
\end{aligned}
$$

