Chapter 7 - Arithmetic Series

AP = Arithmetic Progression
$(A P)$ is a sequence of numbers in order, in which the difference between any two consecutive numbers is a constant value
L First term (a)
L Common difference (d)
L nth Term (an)
$\llcorner\quad$ The sum of the first n terms (Sn)
General formula $=a+(n-1) d$
General term $=a n=a+(n-1) \times d$
Sum of terms $=S n=n / 2[2 a+(n-1) \times d]$
GP = Geometric Progression
(GP) is a type of sequence where each succeeding term is produced by multiplying each preceding term by a fixed number, which is called a common ratio
\llcorner Three non-zero terms - a, b, c - are in GP only if $b 2=a c$
\llcorner In a GP, three consecutive terms can be taken as a / r, a, ar
$\left\llcorner\right.$ Four consecutive terms can be taken as $a / r^{3}, a / r, a r, a r^{3}$
$\left\llcorner\right.$ Five consecutive terms can be taken as $a / r^{2}, a / r, a, a r, a r^{2}$
\llcorner In a finite GP, the product of the terms equidistant from the beginning and the end is the same. That means, $\mathrm{t} 1 . \mathrm{tn}=\mathrm{t} 2 . \mathrm{tn}-1$ $=\mathrm{t} 3 . \mathrm{tn}-2=. . .$.
\llcorner If each term of a GP is multiplied or divided by a non-zero constant, then the resulting sequence is also a GP with the same standard ratio
\llcorner The product and quotient of two GPs is again a GP
\llcorner If each term of a GP is raised to the power by the same non-zero quantity, the resultant sequence is also a GP
General formula $=a r^{n-1}$
General term formula $=a n=t n=a r^{n-1}$
Sum of terms formula $=S n=a\left[\left(r^{n}-1\right) /(r-1)\right]$ if $r \neq 1$ and $r>1$
Sum to infinity formula $=S_{\infty}=a /(1-r)$
The sum to infinity of a geometric sequence is the sum of the first n terms as n approaches infinity. This, however, does not exist for all geometric sequences. Let's relate this to two examples.

$$
2+4+8+16+32+\ldots
$$

Each term is twice the previous term ($r=2$). The sum of the series is not finite, since each term is bigger than the previous. This is known as a divergent sequence.

$$
2+1+1 / 2+1 / 4+1 / 8+\ldots
$$

In this sequence, each term is half the previous term ($r=1 / 2$). The sum of this kind of series is finite since eventually, the terms will reach 0 . This is known as a convergent sequence.

A geometric sequence is only convergent if $|r|<1$

Sigma Notation

