Chapter 4 - Permutations and Combinations

In mathematics, combination and permutation are two different ways of grouping elements of a set into subsets.

Permutation cares about the order
The combination doesn't care about the order

Permutation and combination are the ways to select certain objects from a group of objects to form subsets with or without replacement.

In mathematics, permutation relates to the act of arranging all the members of a set into some sequence or order

The combination is a way of selecting items from a collection, such that (unlike permutations) the order of selection does not matter.

Permutation formula:

$$
n P r=(n!) /(n-r)!
$$

Combination formula:

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}
$$

Permutation	Combination
Arranging people, digits, numbers, alphabets, letters, and colors	Selection of menu, food, clothes, subjects, and team.
Picking a team captain, pitcher, and shortstop from a group.	Picking three team members from a group.
Picking two favourite colours, in order, from a colour brochure.	Picking two colours from a colour brochure.
Picking first, second, and third place winners.	Picking three winners.

Example:

How many numbers of four digits can be formed with the digits 1,2,3,4 and 5? (repetition of digits is not allowed)

Required number: ${ }^{5} \mathrm{P}_{4}=5!/ 1!=5 \times 4 \times 3 \times 2=120$

Combinations:

$$
\begin{aligned}
{ }^{n} C_{r} & =\frac{n!}{r!(n-r)!} \\
\begin{aligned}
{ }^{10} C_{4} & =C(n, r)
\end{aligned} & =C(10,4) \\
& =\frac{10!}{(4!(10-4)!)} \\
& =\frac{10!}{4!\times 6!} \\
& =210 \text { ways }
\end{aligned}
$$

